Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(2): e17213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014725

RESUMEN

International policy recently adopted commitments to maintain genetic diversity in wild populations to secure their adaptive potential, including metrics to monitor temporal trends in genetic diversity - so-called indicators. A national programme for assessing trends in genetic diversity was recently initiated in Sweden. Relating to this effort, we systematically assess contemporary genome-wide temporal trends (40 years) in wild populations using the newly adopted indicators and whole genome sequencing (WGS). We use pooled and individual WGS data from brown trout (Salmo trutta) in eight alpine lakes in protected areas. Observed temporal trends in diversity metrics (nucleotide diversity, Watterson's Ï´ and heterozygosity) lie within proposed acceptable threshold values for six of the lakes, but with consistently low values in lakes above the tree line and declines observed in these northern-most lakes. Local effective population size is low in all lakes, highlighting the importance of continued protection of interconnected systems to allow genetic connectivity for long-term viability of these populations. Inbreeding (FROH ) spans 10%-30% and is mostly represented by ancient (<1 Mb) runs of homozygosity, with observations of little change in mutational load. We also investigate adaptive dynamics over evolutionarily short time frames (a few generations); identifying putative parallel selection across all lakes within a gene pertaining to skin pigmentation as well as candidates of selection unique to specific lakes and lake systems involved in reproduction and immunity. We demonstrate the utility of WGS for systematic monitoring of natural populations, a priority concern if genetic diversity is to be protected.


Asunto(s)
Variación Genética , Genoma , Animales , Variación Genética/genética , Genoma/genética , Trucha/genética , Endogamia , Densidad de Población , Lagos
2.
Commun Biol ; 6(1): 1035, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848497

RESUMEN

Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.


Asunto(s)
Ciervos , Genoma , Animales , Suecia , Genómica , Ciervos/genética , Endogamia
3.
Acta Biotheor ; 71(3): 19, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458852

RESUMEN

The variance effective population size ([Formula: see text]) is frequently used to quantify the expected rate at which a population's allele frequencies change over time. The purpose of this paper is to find expressions for the global [Formula: see text] of a spatially structured population that are of interest for conservation of species. Since [Formula: see text] depends on allele frequency change, we start by dividing the cause of allele frequency change into genetic drift within subpopulations (I) and a second component mainly due to migration between subpopulations (II). We investigate in detail how these two components depend on the way in which subpopulations are weighted as well as their dependence on parameters of the model such a migration rates, and local effective and census sizes. It is shown that under certain conditions the impact of II is eliminated, and [Formula: see text] of the metapopulation is maximized, when subpopulations are weighted proportionally to their long term reproductive contributions. This maximal [Formula: see text] is the sought for global effective size, since it approximates the gene diversity effective size [Formula: see text], a quantifier of the rate of loss of genetic diversity that is relevant for conservation of species and populations. We also propose two novel versions of [Formula: see text], one of which (the backward version of [Formula: see text]) is most stable, exists for most populations, and is closer to [Formula: see text] than the classical notion of [Formula: see text]. Expressions for the optimal length of the time interval for measuring genetic change are developed, that make it possible to estimate any version of [Formula: see text] with maximal accuracy.


Asunto(s)
Flujo Genético , Animales , Frecuencia de los Genes , Densidad de Población , Tiempo
4.
Mol Ecol Resour ; 23(6): 1334-1347, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37122118

RESUMEN

Measurement of allele frequency shifts between temporally spaced samples has long been used for assessment of effective population size (Ne ), and this 'temporal method' provides estimates of Ne referred to as variance effective size (NeV ). We show that NeV of a local population that belongs to a sub-structured population (a metapopulation) is determined not only by genetic drift and migration rate (m), but also by the census size (Nc ). The realized NeV of a local population can either increase or decrease with increasing m, depending on the relationship between Ne and Nc in isolation. This is shown by explicit mathematical expressions for the factors affecting NeV derived for an island model of migration. We verify analytical results using high-resolution computer simulations, and show that the phenomenon is not restricted to the island model migration pattern. The effect of Nc on the realized NeV of a local subpopulation is most pronounced at high migration rates. We show that Nc only affects local NeV , whereas NeV for the metapopulation as a whole, inbreeding (NeI ), and linkage disequilibrium (NeLD ) effective size are all independent of Nc . Our results provide a possible explanation to the large variation of Ne /Nc ratios reported in the literature, where Ne is frequently estimated by NeV . They are also important for the interpretation of empirical Ne estimates in genetic management where local NeV is often used as a substitute for inbreeding effective size, and we suggest an increased focus on metapopulation NeV as a proxy for NeI .


Asunto(s)
Censos , Endogamia , Densidad de Población , Flujo Genético , Frecuencia de los Genes , Genética de Población , Variación Genética
5.
Mol Ecol ; 31(24): 6422-6439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170147

RESUMEN

Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. We monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout (Salmo trutta) inhabiting 27 small mountain lakes representing 10 lake systems in central Sweden using >1200 fish per time point. We tested six newly proposed indicators; three were designed for broad, international use in the UN Convention on Biological Diversity (CBD) and are currently applied in several countries. The other three were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations (indicators ΔH and ΔFST , respectively) and assess the effective population size (Ne -indicator). We identified 29 genetically distinct populations, all retained over time. Twelve of the 27 lakes harboured more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The Ne indicator showed values below the threshold (Ne ≤ 500) in 20 populations with five showing Ne < 100. Statistically significant genetic diversity reductions occurred in several populations. Metapopulation structure appears to buffer against diversity loss; applying the indicators to metapopulations suggest mostly acceptable rates of change in all but one system. The CBD indicators agreed with the Swedish ones but provided less detail. All these indicators are appropriate for managers to initiate monitoring of genetic biodiversity.


Asunto(s)
Variación Genética , Genética de Población , Animales , Variación Genética/genética , Trucha/genética , Biodiversidad , Lagos
6.
Ecol Evol ; 12(7): e9050, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813906

RESUMEN

Population translocations occur for a variety of reasons, from displacement due to climate change to human-induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole-genome sequencing of pooled DNA (Pool-seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool-seq can be used as an initial tool to monitor genome-wide effects.

8.
Mol Ecol ; 31(2): 498-511, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699656

RESUMEN

The sympatric existence of genetically distinguishable populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves certain parts of the genome. We returned to the first reported case of salmonid sympatry, initially detected through contrasting homozygosity at a single allozyme locus (coding for lactate dehydrogenase A) in brown trout in the small Lakes Bunnersjöarna, Sweden. First, we verified the existence of the two coexisting demes using a 96-SNP fluidigm array. We then applied whole-genome resequencing of pooled DNA to explore genome-wide diversity within and between these demes; nucleotide diversity was higher in deme I than in deme II. Strong genetic divergence is observed with genome-wide FST  ≈ 0.2. Compared with data from populations of similar small lakes, this divergence is of similar magnitude as that between reproductively isolated populations. Individual whole-genome resequencing of two individuals per deme suggests higher inbreeding in deme II versus deme I, indicating different degree of isolation. We located two gene-copies for LDH-A and found divergence between demes in a regulatory section of one of these genes. However, we did not find a perfect fit between the sequence data and previous allozyme results, and this will require further research. Our data demonstrates genome-wide divergence governed mostly by genetic drift but also by diversifying selection in coexisting populations. This type of hidden biodiversity needs consideration in conservation management.


Asunto(s)
Aislamiento Reproductivo , Simpatría , Animales , Variación Genética , Genética de Población , Humanos , Isoenzimas , Trucha/genética
9.
BMC Genomics ; 21(1): 854, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267779

RESUMEN

BACKGROUND: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. RESULTS: We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. CONCLUSIONS: Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.


Asunto(s)
Ciervos , Variación Genética , Animales , ADN Mitocondrial/genética , Ciervos/genética , Demografía , Europa (Continente) , América del Norte , Filogenia , Análisis de Secuencia de ADN
11.
Ecol Evol ; 9(19): 11448-11463, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641485

RESUMEN

Developing genomic insights is challenging in nonmodel species for which resources are often scarce and prohibitively costly. Here, we explore the potential of a recently established approach using Pool-seq data to generate a de novo genome assembly for mining exons, upon which Pool-seq data are used to estimate population divergence and diversity. We do this for two pairs of sympatric populations of brown trout (Salmo trutta): one naturally sympatric set of populations and another pair of populations introduced to a common environment. We validate our approach by comparing the results to those from markers previously used to describe the populations (allozymes and individual-based single nucleotide polymorphisms [SNPs]) and from mapping the Pool-seq data to a reference genome of the closely related Atlantic salmon (Salmo salar). We find that genomic differentiation (F ST) between the two introduced populations exceeds that of the naturally sympatric populations (F ST = 0.13 and 0.03 between the introduced and the naturally sympatric populations, respectively), in concordance with estimates from the previously used SNPs. The same level of population divergence is found for the two genome assemblies, but estimates of average nucleotide diversity differ ( π ¯  ≈ 0.002 and π ¯  ≈ 0.001 when mapping to S. trutta and S. salar, respectively), although the relationships between population values are largely consistent. This discrepancy might be attributed to biases when mapping to a haploid condensed assembly made of highly fragmented read data compared to using a high-quality reference assembly from a divergent species. We conclude that the Pool-seq-only approach can be suitable for detecting and quantifying genome-wide population differentiation, and for comparing genomic diversity in populations of nonmodel species where reference genomes are lacking.

12.
Mol Ecol ; 28(8): 1904-1918, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30663828

RESUMEN

Estimation of effective population size (Ne ) from genetic marker data is a major focus for biodiversity conservation because it is essential to know at what rates inbreeding is increasing and additive genetic variation is lost. But are these the rates assessed when applying commonly used Ne estimation techniques? Here we use recently developed analytical tools and demonstrate that in the case of substructured populations the answer is no. This is because the following: Genetic change can be quantified in several ways reflecting different types of Ne such as inbreeding (NeI ), variance (NeV ), additive genetic variance (NeAV ), linkage disequilibrium equilibrium (NeLD ), eigenvalue (NeE ) and coalescence (NeCo ) effective size. They are all the same for an isolated population of constant size, but the realized values of these effective sizes can differ dramatically in populations under migration. Commonly applied Ne -estimators target NeV or NeLD of individual subpopulations. While such estimates are safe proxies for the rates of inbreeding and loss of additive genetic variation under isolation, we show that they are poor indicators of these rates in populations affected by migration. In fact, both the local and global inbreeding (NeI ) and additive genetic variance (NeAV ) effective sizes are consistently underestimated in a subdivided population. This is serious because these are the effective sizes that are relevant to the widely accepted 50/500 rule for short and long term genetic conservation.  The bias can be infinitely large and is due to inappropriate parameters being estimated when applying theory for isolated populations to subdivided ones.


Asunto(s)
Marcadores Genéticos/genética , Variación Genética/genética , Genética de Población , Densidad de Población , Animales , Flujo Génico , Endogamia , Desequilibrio de Ligamiento , Modelos Genéticos , Dinámica Poblacional/estadística & datos numéricos
13.
Mol Ecol ; 27(20): 4011-4025, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30137668

RESUMEN

Sympatric populations are conspecific populations that coexist spatially. They are of interest in evolutionary biology by representing the potential first steps of sympatric speciation and are important to identify and monitor in conservation management. Reviewing the literature pertaining to sympatric populations, we find that most cases of sympatry appear coupled to phenotypic divergence, implying ease of detection. In comparison, phenotypically cryptic, sympatric populations seem rarely documented. We explore the statistical power for detecting population mixtures from genetic marker data, using commonly applied tests for heterozygote deficiency (i.e., Wahlund effect) and the structure software, through computer simulations. We find that both tests are efficient at detecting population mixture only when genetic differentiation is high, sample size and number of genetic markers are reasonable and the sympatric populations happen to occur in similar proportions in the sample. We present an approximate expression based on these experimental factors for the lower limit of FST , beyond which power for structure collapses and only the heterozygote-deficiency tests retain some, although low, power. The findings suggest that cases of cryptic sympatry may have passed unnoticed in population genetic screenings using number of loci typical of the pre-genomics era. Hence, cryptic sympatric populations may be more common than hitherto thought, and we urge more attention being diverted to their detection and characterization.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Simpatría/genética , Animales , Especiación Genética , Variación Genética/genética , Genética de Población
14.
Proc Natl Acad Sci U S A ; 114(17): E3452-E3461, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28389569

RESUMEN

Atlantic herring is an excellent species for studying the genetic basis of adaptation in geographically distant populations because of its characteristically large population sizes and low genetic drift. In this study we compared whole-genome resequencing data of Atlantic herring populations from both sides of the Atlantic Ocean. An important finding was the very low degree of genetic differentiation among geographically distant populations (fixation index = 0.026), suggesting lack of reproductive isolation across the ocean. This feature of the Atlantic herring facilitates the detection of genetic factors affecting adaptation because of the sharp contrast between loci showing genetic differentiation resulting from natural selection and the low background noise resulting from genetic drift. We show that genetic factors associated with timing of reproduction are shared between genetically distinct and geographically distant populations. The genes for thyroid-stimulating hormone receptor (TSHR), the SOX11 transcription factor (SOX11), calmodulin (CALM), and estrogen receptor 2 (ESR2A), all with a significant role in reproductive biology, were among the loci that showed the most consistent association with spawning time throughout the species range. In fact, the same two SNPs located at the 5' end of TSHR showed the most significant association with spawning time in both the east and west Atlantic. We also identified unexpected haplotype sharing between spring-spawning oceanic herring and autumn-spawning populations across the Atlantic Ocean and the Baltic Sea. The genomic regions showing this pattern are unlikely to control spawning time but may be involved in adaptation to ecological factor(s) shared among these populations.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Receptores de Tirotropina/genética , Animales , Océano Atlántico , Estudio de Asociación del Genoma Completo
15.
Mol Ecol Resour ; 17(6): 1378-1384, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28339169

RESUMEN

The genetically effective population size (Ne ) is of key importance for quantifying rates of inbreeding and genetic drift and is often used in conservation management to set targets for genetic viability. The concept was developed for single, isolated populations and the mathematical means for analysing the expected Ne in complex, subdivided populations have previously not been available. We recently developed such analytical theory and central parts of that work have now been incorporated into a freely available software tool presented here. gesp (Genetic Effective population size, inbreeding and divergence in Substructured Populations) is R-based and designed to model short- and long-term patterns of genetic differentiation and effective population size of subdivided populations. The algorithms performed by gesp allow exact computation of global and local inbreeding and eigenvalue effective population size, predictions of genetic divergence among populations (GST ) as well as departures from random mating (FIS , FIT ) while varying (i) subpopulation census and effective size, separately or including trend of the global population size, (ii) rate and direction of migration between all pairs of subpopulations, (iii) degree of relatedness and divergence among subpopulations, (iv) ploidy (haploid or diploid) and (v) degree of selfing. Here, we describe gesp and exemplify its use in conservation genetics modelling.


Asunto(s)
Biología Computacional/métodos , Variación Genética , Endogamia , Densidad de Población , Programas Informáticos , Algoritmos
16.
Theor Popul Biol ; 112: 139-156, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27634366

RESUMEN

Many versions of the effective population size (Ne) exist, and they are important in population genetics in order to quantify rates of change of various characteristics, such as inbreeding, heterozygosity, or allele frequencies. Traditionally, Ne was defined for single, isolated populations, but we have recently presented a mathematical framework for subdivided populations. In this paper we focus on diploid populations with geographic subdivision, and present new theoretical results. We compare the haploid and diploid versions of the inbreeding effective size (NeI) with novel expression for the variance effective size (NeV), and conclude that for local populations NeV is often much smaller than both versions of NeI, whenever they exist. Global NeV of the metapopulation, on the other hand, is close to the haploid NeI and much larger than the diploid NeI. We introduce a new effective size, the additive genetic variance effective size NeAV, which is of particular interest for long term protection of species. It quantifies the rate at which additive genetic variance is lost and we show that this effective size is closely related to the haploid version of NeI. Finally, we introduce a new measure of a population's deviation from migration-drift equilibrium, and apply it to quantify the time it takes to reach this equilibrium. Our findings are of importance for understanding the concept of effective population size in substructured populations and many of the results have applications in conservation biology.


Asunto(s)
Genética de Población , Modelos Genéticos , Densidad de Población , Consanguinidad , Variación Genética
17.
Elife ; 52016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27138043

RESUMEN

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.


Asunto(s)
Adaptación Biológica , Peces/genética , Variación Genética , Animales , Océano Atlántico , Peces/clasificación , Peces/fisiología , Genética de Población , Genómica , Aguas Salinas , Agua de Mar
18.
Theor Popul Biol ; 102: 40-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25875853

RESUMEN

Motivated by problems in conservation biology we study genetic dynamics in structured populations of diploid organisms (monoecious or dioecious). Our analysis provides an analytical framework that unifies substantial parts of previous work in terms of exact identity by descent (IBD) and identity by state (IBS) recursions. We provide exact conditions under which two structured haploid and diploid populations are equivalent, and some sufficient conditions under which a dioecious diploid population can be treated as a monoecious diploid one. The IBD recursions are used for computing local and metapopulation inbreeding and coancestry effective population sizes and for predictions of several types of fixation indices over different time horizons.


Asunto(s)
Evolución Biológica , Diploidia , Genética de Población , Endogamia , Animales , Femenino , Masculino , Modelos Genéticos , Densidad de Población , Dinámica Poblacional
19.
Math Biosci ; 258: 113-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25445736

RESUMEN

The main purpose of this paper is to develop a theoretical framework for assessing effective population size and genetic divergence in situations with structured populations that consist of various numbers of more or less interconnected subpopulations. We introduce a general infinite allele model for a diploid, monoecious and subdivided population, with subpopulation sizes varying over time, including local subpopulation extinction and recolonization, bottlenecks, cyclic census size changes or exponential growth. Exact matrix analytic formulas are derived for recursions of predicted (expected) gene identities and gene diversities, identity by descent and coalescence probabilities, and standardized variances of allele frequency change. This enables us to compute and put into a general framework a number of different types of genetically effective population sizes (Ne) including variance, inbreeding, nucleotide diversity, and eigenvalue effective size. General expressions for predictions (gST) of the coefficient of gene differentiation GST are also derived. We suggest that in order to adequately describe important properties of a subdivided population with respect to allele frequency change and maintenance of genetic variation over time, single values of gST and Ne are not enough. Rather, the temporal dynamic patterns of these properties are important to consider. We introduce several schemes for weighting subpopulations that enable effective size and expected genetic divergence to be calculated and described as functions of time, globally for the whole population and locally for any group of subpopulations. The traditional concept of effective size is generalized to situations where genetic drift is confounded by external sources, such as immigration and mutation. Finally, we introduce a general methodology for state space reduction, which greatly decreases the computational complexity of the matrix analytic formulas.


Asunto(s)
Variación Genética , Modelos Genéticos , Dinámica Poblacional , Animales , Humanos
20.
Mol Ecol ; 23(1): 23-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24372752

RESUMEN

The world faces a global fishing crisis. Wild marine fisheries comprise nearly 15% of all animal protein in the human diet, but, according to the U.N. Food and Agriculture Organization, nearly 60% of all commercially important marine fish stocks are overexploited, recovering, or depleted (FAO 2012; Fig. 1). Some authors have suggested that the large population sizes of harvested marine fish make even collapsed populations resistant to the loss of genetic variation by genetic drift (e.g. Beverton 1990). In contrast, others have argued that the loss of alleles because of overfishing may actually be more dramatic in large populations than in small ones (Ryman et al. 1995). In this issue, Pinsky & Palumbi (2014) report that overfished populations have approximately 2% lower heterozygosity and 12% lower allelic richness than populations that are not overfished. They also performed simulations which suggest that their estimates likely underestimate the actual loss of rare alleles by a factor of three or four. This important paper shows that the harvesting of marine fish can have genetic effects that threaten the long-term sustainability of this valuable resource.


Asunto(s)
Explotaciones Pesqueras , Peces/genética , Variación Genética , Genética de Población , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...